Symmetries related to Yang--Baxter equation and reflection equations
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 180-192

Voir la notice de l'article provenant de la source Math-Net.Ru

The short review of some of the main achievements obtained recently in investigations of the symmetry properties of systems solved by the quantum inverse scattering methods and connected with the Yang–Baxter equation and reflection equations are reviewed. Special attention is devoted to the twist procedure. Twist relates three constant $R$-matrices corresponding to Lie super-algebra $gl(1|1)$.
@article{ZNSL_2000_269_a13,
     author = {E. V. Damaskinsky and P. P. Kulish},
     title = {Symmetries related to {Yang--Baxter} equation and reflection equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {180--192},
     publisher = {mathdoc},
     volume = {269},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a13/}
}
TY  - JOUR
AU  - E. V. Damaskinsky
AU  - P. P. Kulish
TI  - Symmetries related to Yang--Baxter equation and reflection equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 180
EP  - 192
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a13/
LA  - ru
ID  - ZNSL_2000_269_a13
ER  - 
%0 Journal Article
%A E. V. Damaskinsky
%A P. P. Kulish
%T Symmetries related to Yang--Baxter equation and reflection equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 180-192
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a13/
%G ru
%F ZNSL_2000_269_a13
E. V. Damaskinsky; P. P. Kulish. Symmetries related to Yang--Baxter equation and reflection equations. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 180-192. http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a13/