The Selberg $Z$-function and the Lindelöf conjecture
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 151-163
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that, under some assumptions, the Selberg $Z$-function $Z(s)$ is of order $t^\varepsilon/(\sigma-\frac12)$ in a sufficiently small neighborhood of the critical straight line $\sigma>\frac12$, $t\ge1$, and $\varepsilon>0$ is an arbitrary small but fixed.
@article{ZNSL_2000_269_a11,
author = {A. I. Vinogradov},
title = {The {Selberg} $Z$-function and the {Lindel\"of} conjecture},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {151--163},
year = {2000},
volume = {269},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a11/}
}
A. I. Vinogradov. The Selberg $Z$-function and the Lindelöf conjecture. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 151-163. http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a11/