The Selberg $Z$-function and the Lindelöf conjecture
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 151-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that, under some assumptions, the Selberg $Z$-function $Z(s)$ is of order $t^\varepsilon/(\sigma-\frac12)$ in a sufficiently small neighborhood of the critical straight line $\sigma>\frac12$, $t\ge1$, and $\varepsilon>0$ is an arbitrary small but fixed.
@article{ZNSL_2000_269_a11,
     author = {A. I. Vinogradov},
     title = {The {Selberg} $Z$-function and the {Lindel\"of} conjecture},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {151--163},
     year = {2000},
     volume = {269},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a11/}
}
TY  - JOUR
AU  - A. I. Vinogradov
TI  - The Selberg $Z$-function and the Lindelöf conjecture
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 151
EP  - 163
VL  - 269
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a11/
LA  - ru
ID  - ZNSL_2000_269_a11
ER  - 
%0 Journal Article
%A A. I. Vinogradov
%T The Selberg $Z$-function and the Lindelöf conjecture
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 151-163
%V 269
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a11/
%G ru
%F ZNSL_2000_269_a11
A. I. Vinogradov. The Selberg $Z$-function and the Lindelöf conjecture. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 151-163. http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a11/