The analytical (spectral) representation of the solution of delay algebraic-differential equations
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIV, Tome 268 (2000), pp. 145-158
Voir la notice de l'article provenant de la source Math-Net.Ru
A new approach to finding analytical solutions of linear delay algebraic-differential equations is suggested. The analytical form of the solution is determined in terms of the infinite set of eigenvalues of a parametric matrix whose entries are the delay-time operators $\exp(-p\tau)$, where $p$ is the Laplace operator. In order to compute constants in the solution of the homogeneous equations, one must analytically find higher derivatives at the input of the delay operator. Issues of stopping the computation of the infinite spectrum upon determining a certain number of its components are discussed.
@article{ZNSL_2000_268_a8,
author = {V. B. Mikhailov},
title = {The analytical (spectral) representation of the solution of delay algebraic-differential equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {145--158},
publisher = {mathdoc},
volume = {268},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a8/}
}
TY - JOUR AU - V. B. Mikhailov TI - The analytical (spectral) representation of the solution of delay algebraic-differential equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 145 EP - 158 VL - 268 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a8/ LA - ru ID - ZNSL_2000_268_a8 ER -
V. B. Mikhailov. The analytical (spectral) representation of the solution of delay algebraic-differential equations. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIV, Tome 268 (2000), pp. 145-158. http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a8/