The analytical (spectral) representation of the solution of delay algebraic-differential equations
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIV, Tome 268 (2000), pp. 145-158

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to finding analytical solutions of linear delay algebraic-differential equations is suggested. The analytical form of the solution is determined in terms of the infinite set of eigenvalues of a parametric matrix whose entries are the delay-time operators $\exp(-p\tau)$, where $p$ is the Laplace operator. In order to compute constants in the solution of the homogeneous equations, one must analytically find higher derivatives at the input of the delay operator. Issues of stopping the computation of the infinite spectrum upon determining a certain number of its components are discussed.
@article{ZNSL_2000_268_a8,
     author = {V. B. Mikhailov},
     title = {The analytical (spectral) representation of the solution of delay algebraic-differential equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {145--158},
     publisher = {mathdoc},
     volume = {268},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a8/}
}
TY  - JOUR
AU  - V. B. Mikhailov
TI  - The analytical (spectral) representation of the solution of delay algebraic-differential equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 145
EP  - 158
VL  - 268
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a8/
LA  - ru
ID  - ZNSL_2000_268_a8
ER  - 
%0 Journal Article
%A V. B. Mikhailov
%T The analytical (spectral) representation of the solution of delay algebraic-differential equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 145-158
%V 268
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a8/
%G ru
%F ZNSL_2000_268_a8
V. B. Mikhailov. The analytical (spectral) representation of the solution of delay algebraic-differential equations. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIV, Tome 268 (2000), pp. 145-158. http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a8/