The application of the rank-factorization method to the analysis of spectral characteristics of a polynomial multiparameter matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIV, Tome 268 (2000), pp. 115-144

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of rank-factorization (the $\Delta W$-$q$ method), previously suggested by the author as a method for solving multiparameter algebraic problems for matrix $F$ polynomially dependent on parameters, is applied to analyze the finite spectrum of the matrix $F$. Special attention is paid to the part of the spectrum $\sigma[F]$ of the $q$-parameter matrix $F$ whose points are independent of at least one of the spectral parameters.
@article{ZNSL_2000_268_a7,
     author = {V. N. Kublanovskaya},
     title = {The application of the rank-factorization method to the analysis of spectral characteristics of a polynomial multiparameter matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {115--144},
     publisher = {mathdoc},
     volume = {268},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a7/}
}
TY  - JOUR
AU  - V. N. Kublanovskaya
TI  - The application of the rank-factorization method to the analysis of spectral characteristics of a polynomial multiparameter matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 115
EP  - 144
VL  - 268
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a7/
LA  - ru
ID  - ZNSL_2000_268_a7
ER  - 
%0 Journal Article
%A V. N. Kublanovskaya
%T The application of the rank-factorization method to the analysis of spectral characteristics of a polynomial multiparameter matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 115-144
%V 268
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a7/
%G ru
%F ZNSL_2000_268_a7
V. N. Kublanovskaya. The application of the rank-factorization method to the analysis of spectral characteristics of a polynomial multiparameter matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIV, Tome 268 (2000), pp. 115-144. http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a7/