The case of equality in the generalized Wielandt inequality
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIV, Tome 268 (2000), pp. 86-94
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This note provides a description of all those pairs of nonzero vectors $x,y\in\mathbb C_n$, $n\ge2$, for which the generalized Wielandt inequality
$$
|x^*Ay|^2\le\Biggr[\frac{\lambda_1-\lambda_n+(\lambda_1+\lambda_n)|\varphi|}{\lambda_1+\lambda_n+(\lambda_1-\lambda_n)|\varphi|}\Biggl]^2x^*Ax\,\,y^*Ay, \ \varphi=\frac{x^*y}{\|x\|\,\|y\|},
$$
where $A\in\mathbb C^{n\times n}$ is an Hermitian positive-definite matrix with eigenvalues $\lambda_1\ge\lambda_2\ge\cdots\ge\lambda_n$ such that $\lambda_1>\lambda_n$, holds with equality.
			
            
            
            
          
        
      @article{ZNSL_2000_268_a5,
     author = {L. Yu. Kolotilina},
     title = {The case of equality in the generalized {Wielandt} inequality},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {86--94},
     publisher = {mathdoc},
     volume = {268},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a5/}
}
                      
                      
                    L. Yu. Kolotilina. The case of equality in the generalized Wielandt inequality. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIV, Tome 268 (2000), pp. 86-94. http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a5/