The case of equality in the generalized Wielandt inequality
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIV, Tome 268 (2000), pp. 86-94

Voir la notice de l'article provenant de la source Math-Net.Ru

This note provides a description of all those pairs of nonzero vectors $x,y\in\mathbb C_n$, $n\ge2$, for which the generalized Wielandt inequality $$ |x^*Ay|^2\le\Biggr[\frac{\lambda_1-\lambda_n+(\lambda_1+\lambda_n)|\varphi|}{\lambda_1+\lambda_n+(\lambda_1-\lambda_n)|\varphi|}\Biggl]^2x^*Ax\,\,y^*Ay, \ \varphi=\frac{x^*y}{\|x\|\,\|y\|}, $$ where $A\in\mathbb C^{n\times n}$ is an Hermitian positive-definite matrix with eigenvalues $\lambda_1\ge\lambda_2\ge\cdots\ge\lambda_n$ such that $\lambda_1>\lambda_n$, holds with equality.
@article{ZNSL_2000_268_a5,
     author = {L. Yu. Kolotilina},
     title = {The case of equality in the generalized {Wielandt} inequality},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {86--94},
     publisher = {mathdoc},
     volume = {268},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a5/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - The case of equality in the generalized Wielandt inequality
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 86
EP  - 94
VL  - 268
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a5/
LA  - ru
ID  - ZNSL_2000_268_a5
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T The case of equality in the generalized Wielandt inequality
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 86-94
%V 268
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a5/
%G ru
%F ZNSL_2000_268_a5
L. Yu. Kolotilina. The case of equality in the generalized Wielandt inequality. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIV, Tome 268 (2000), pp. 86-94. http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a5/