Lower bounds for the Perron root of a~sum of nonnegative matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIV, Tome 268 (2000), pp. 49-71
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A^{(l)}$ $(l=1,\dots,k)$ be $n\times n$ nonnegative matrices with right and left Perron vectors $u^{(l)}$ and $v^{(l)}$, respectively, and let $D^{(l)}$ and $E^{(l)}$ $(l=1,\dots,k)$ be positive-definite diagonal matrices of the same order. Extending known results, under the assumption that
$$
u^{(1)}\circ v^{(1)}=\dots=u^{(k)}\circ v^{(k)}\ne0
$$
(where "$\circ$" denotes the componentwise, i.e., the Hadamard product of vectors) but without requiring that the matrices $A^{(l)}$ be irreducible, for the Perron root of the sum $\sum^k_{l=1}D^{(l)}A^{(l)}E^{(l)}$ we derive a lower bound of the form
$$
\rho\left(\sum^k_{l=1}D^{(l)}A^{(l)}E^{(l)}\right)\ge\sum^{k}_{l=1}\beta_l\rho(A^{(l)}),\quad\beta_l>0.
$$
Also we prove that, for arbitrary irreducible nonnegative matrices $A^{(l)}$ $(l=1,\ldots,k)$,
$$
\rho\left(\sum^{k}_{l=1}A^{(l)}\right)\ge\sum^k_{l=1}\alpha_l\rho(A^{(l)}),
$$
where the coefficients $\alpha_l>0$ are specified using an arbitrarily chosen normalized positive vector. The cases of equality in both estimates are analyzed, and some other related results are established.
@article{ZNSL_2000_268_a3,
author = {L. Yu. Kolotilina},
title = {Lower bounds for the {Perron} root of a~sum of nonnegative matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {49--71},
publisher = {mathdoc},
volume = {268},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a3/}
}
L. Yu. Kolotilina. Lower bounds for the Perron root of a~sum of nonnegative matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIV, Tome 268 (2000), pp. 49-71. http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a3/