Lower bounds for the Perron root of a~sum of nonnegative matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIV, Tome 268 (2000), pp. 49-71

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A^{(l)}$ $(l=1,\dots,k)$ be $n\times n$ nonnegative matrices with right and left Perron vectors $u^{(l)}$ and $v^{(l)}$, respectively, and let $D^{(l)}$ and $E^{(l)}$ $(l=1,\dots,k)$ be positive-definite diagonal matrices of the same order. Extending known results, under the assumption that $$ u^{(1)}\circ v^{(1)}=\dots=u^{(k)}\circ v^{(k)}\ne0 $$ (where "$\circ$" denotes the componentwise, i.e., the Hadamard product of vectors) but without requiring that the matrices $A^{(l)}$ be irreducible, for the Perron root of the sum $\sum^k_{l=1}D^{(l)}A^{(l)}E^{(l)}$ we derive a lower bound of the form $$ \rho\left(\sum^k_{l=1}D^{(l)}A^{(l)}E^{(l)}\right)\ge\sum^{k}_{l=1}\beta_l\rho(A^{(l)}),\quad\beta_l>0. $$ Also we prove that, for arbitrary irreducible nonnegative matrices $A^{(l)}$ $(l=1,\ldots,k)$, $$ \rho\left(\sum^{k}_{l=1}A^{(l)}\right)\ge\sum^k_{l=1}\alpha_l\rho(A^{(l)}), $$ where the coefficients $\alpha_l>0$ are specified using an arbitrarily chosen normalized positive vector. The cases of equality in both estimates are analyzed, and some other related results are established.
@article{ZNSL_2000_268_a3,
     author = {L. Yu. Kolotilina},
     title = {Lower bounds for the {Perron} root of a~sum of nonnegative matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {49--71},
     publisher = {mathdoc},
     volume = {268},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a3/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Lower bounds for the Perron root of a~sum of nonnegative matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 49
EP  - 71
VL  - 268
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a3/
LA  - ru
ID  - ZNSL_2000_268_a3
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Lower bounds for the Perron root of a~sum of nonnegative matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 49-71
%V 268
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a3/
%G ru
%F ZNSL_2000_268_a3
L. Yu. Kolotilina. Lower bounds for the Perron root of a~sum of nonnegative matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIV, Tome 268 (2000), pp. 49-71. http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a3/