Two-sided bounds of the smallest eigenvalue of a positive-definite matrix in the presence of restrictions
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIV, Tome 268 (2000), pp. 181-184
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of minimizing Rayleigh quotient in the presence of restrictions is considered. A method for constructing two-sided bounds of the smallest eigenvalue is suggested.
@article{ZNSL_2000_268_a11,
author = {G. V. Savinov},
title = {Two-sided bounds of the smallest eigenvalue of a positive-definite matrix in the presence of restrictions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {181--184},
publisher = {mathdoc},
volume = {268},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a11/}
}
TY - JOUR AU - G. V. Savinov TI - Two-sided bounds of the smallest eigenvalue of a positive-definite matrix in the presence of restrictions JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 181 EP - 184 VL - 268 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a11/ LA - ru ID - ZNSL_2000_268_a11 ER -
G. V. Savinov. Two-sided bounds of the smallest eigenvalue of a positive-definite matrix in the presence of restrictions. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIV, Tome 268 (2000), pp. 181-184. http://geodesic.mathdoc.fr/item/ZNSL_2000_268_a11/