An extremal property of the Rellot triangle
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 152-155
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $K\subset\mathbb R^2$ be a planar set of unit constant width with piecewise $C^2$-smooth boundary.
Then the area of the set of the points belonging to $\ge3$ diameters of $K$ is $\le\sqrt3/4$, and the area of the set of the points belonging to a unique diameter of $K$ is $\ge(2\pi-3\sqrt3)/4$. In both cases, an equality is attained only if $K$ is the Rellot triangle.
@article{ZNSL_2000_267_a9,
author = {V. V. Makeev},
title = {An extremal property of the {Rellot} triangle},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {152--155},
publisher = {mathdoc},
volume = {267},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a9/}
}
V. V. Makeev. An extremal property of the Rellot triangle. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 152-155. http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a9/