On the geometry of two- and three-dimensional Minkowski spaces
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 146-151

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of centrally-symmetric convex 12-topes (12-hedrons) in $\mathbb R^3$ is described, such that for an arbitrary prescribed norm ${\|\cdot\|}$ on $\mathbb R^3$ each polyhedron in the class can be inscribed in (circumscribed about) the ${\|\cdot\|}$-ball via an affine transformation, and this can be done with large degree of freedom. It is also proved that the Banach–Mazur distance between any two two-dimensional real normed spaces does not exceed $\ln(6-3\sqrt2)$.
@article{ZNSL_2000_267_a8,
     author = {V. V. Makeev},
     title = {On the geometry of two- and three-dimensional {Minkowski} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {146--151},
     publisher = {mathdoc},
     volume = {267},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a8/}
}
TY  - JOUR
AU  - V. V. Makeev
TI  - On the geometry of two- and three-dimensional Minkowski spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 146
EP  - 151
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a8/
LA  - ru
ID  - ZNSL_2000_267_a8
ER  - 
%0 Journal Article
%A V. V. Makeev
%T On the geometry of two- and three-dimensional Minkowski spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 146-151
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a8/
%G ru
%F ZNSL_2000_267_a8
V. V. Makeev. On the geometry of two- and three-dimensional Minkowski spaces. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 146-151. http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a8/