Rigid isotopies of real trigonal curves on the Hirzebruch surfaces
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 133-142
Voir la notice de l'article provenant de la source Math-Net.Ru
A rigid isotopy of nonsingular real algebraic curves on a scroll is a path in the space of such curves of a given bidegree. For real algebraic curves of bidegree $(m,3)$ on the Hirzebruch surface $\Sigma_1$ (the projective plane with a point blown up) we obtain the rigid isotopy classification of nonsingular curves and give some corollaries for the space of curves with a single node or a cusp on a hyperboloid and on $\Sigma_2$.
@article{ZNSL_2000_267_a6,
author = {V. I. Zvonilov},
title = {Rigid isotopies of real trigonal curves on the {Hirzebruch} surfaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {133--142},
publisher = {mathdoc},
volume = {267},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a6/}
}
V. I. Zvonilov. Rigid isotopies of real trigonal curves on the Hirzebruch surfaces. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 133-142. http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a6/