Construction of arrangements of a cubic and a quartic by patchworking
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 119-132
Voir la notice du chapitre de livre
B. Sturmfels modified Viro's patchworking method and applied it for construction of complete intersections. We use this modification for construction of decomposable curves. We realize 11 new arrangements of an $M$-cubic and an $M$-quartic with 12 common points lying on the odd branch of the cubic and on an oval of the quartic.
@article{ZNSL_2000_267_a5,
author = {M. A. Gushchin and A. N. Korobeinikov and G. M. Polotovsky},
title = {Construction of arrangements of a cubic and a quartic by patchworking},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {119--132},
year = {2000},
volume = {267},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a5/}
}
TY - JOUR AU - M. A. Gushchin AU - A. N. Korobeinikov AU - G. M. Polotovsky TI - Construction of arrangements of a cubic and a quartic by patchworking JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 119 EP - 132 VL - 267 UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a5/ LA - ru ID - ZNSL_2000_267_a5 ER -
M. A. Gushchin; A. N. Korobeinikov; G. M. Polotovsky. Construction of arrangements of a cubic and a quartic by patchworking. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 119-132. http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a5/