Construction of arrangements of a cubic and a quartic by patchworking
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 119-132
Cet article a éte moissonné depuis la source Math-Net.Ru
B. Sturmfels modified Viro's patchworking method and applied it for construction of complete intersections. We use this modification for construction of decomposable curves. We realize 11 new arrangements of an $M$-cubic and an $M$-quartic with 12 common points lying on the odd branch of the cubic and on an oval of the quartic.
@article{ZNSL_2000_267_a5,
author = {M. A. Gushchin and A. N. Korobeinikov and G. M. Polotovsky},
title = {Construction of arrangements of a cubic and a quartic by patchworking},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {119--132},
year = {2000},
volume = {267},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a5/}
}
TY - JOUR AU - M. A. Gushchin AU - A. N. Korobeinikov AU - G. M. Polotovsky TI - Construction of arrangements of a cubic and a quartic by patchworking JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 119 EP - 132 VL - 267 UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a5/ LA - ru ID - ZNSL_2000_267_a5 ER -
M. A. Gushchin; A. N. Korobeinikov; G. M. Polotovsky. Construction of arrangements of a cubic and a quartic by patchworking. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 119-132. http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a5/