Rokhlin's question and quotients of real algebraic surfaces by the complex conjugation
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 319-325
Voir la notice de l'article provenant de la source Math-Net.Ru
Complex algebraic surfaces defined over $\mathbb R$ are considered. Local and global topological properties
of their quotients by the complex conjugation are discussed.
@article{ZNSL_2000_267_a23,
author = {S. M. Finashin},
title = {Rokhlin's question and quotients of real algebraic surfaces by the complex conjugation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {319--325},
publisher = {mathdoc},
volume = {267},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a23/}
}
TY - JOUR AU - S. M. Finashin TI - Rokhlin's question and quotients of real algebraic surfaces by the complex conjugation JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 319 EP - 325 VL - 267 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a23/ LA - en ID - ZNSL_2000_267_a23 ER -
S. M. Finashin. Rokhlin's question and quotients of real algebraic surfaces by the complex conjugation. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 319-325. http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a23/