An equivariant analog of the Poincaré–Hopf theorem
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 303-318
Cet article a éte moissonné depuis la source Math-Net.Ru
A new method for localization of algebro-topological invariants of smooth manifolds is given in terms of equivariant tangent vector fields. Main realizations of direct image constructions – the Gysin map and the Becker–Gottlieb transfer map – are calculated for Grassmannizations of complex vector bundles and for a complex-oriented cohomology theory.
@article{ZNSL_2000_267_a22,
author = {K. E. Feldman},
title = {An equivariant analog of the {Poincar\'e{\textendash}Hopf} theorem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {303--318},
year = {2000},
volume = {267},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a22/}
}
K. E. Feldman. An equivariant analog of the Poincaré–Hopf theorem. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 303-318. http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a22/