An equivariant analog of the Poincar\'e--Hopf theorem
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 303-318
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A new method for localization of algebro-topological invariants of smooth manifolds is given in terms of equivariant tangent vector fields. Main realizations of direct image constructions – the Gysin map and
the Becker–Gottlieb transfer map – are calculated for Grassmannizations of complex vector bundles and for a complex-oriented cohomology theory.
			
            
            
            
          
        
      @article{ZNSL_2000_267_a22,
     author = {K. E. Feldman},
     title = {An equivariant analog of the {Poincar\'e--Hopf} theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {303--318},
     publisher = {mathdoc},
     volume = {267},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a22/}
}
                      
                      
                    K. E. Feldman. An equivariant analog of the Poincar\'e--Hopf theorem. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 303-318. http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a22/