An equivariant analog of the Poincaré–Hopf theorem
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 303-318 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A new method for localization of algebro-topological invariants of smooth manifolds is given in terms of equivariant tangent vector fields. Main realizations of direct image constructions – the Gysin map and the Becker–Gottlieb transfer map – are calculated for Grassmannizations of complex vector bundles and for a complex-oriented cohomology theory.
@article{ZNSL_2000_267_a22,
     author = {K. E. Feldman},
     title = {An equivariant analog of the {Poincar\'e{\textendash}Hopf} theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {303--318},
     year = {2000},
     volume = {267},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a22/}
}
TY  - JOUR
AU  - K. E. Feldman
TI  - An equivariant analog of the Poincaré–Hopf theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 303
EP  - 318
VL  - 267
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a22/
LA  - ru
ID  - ZNSL_2000_267_a22
ER  - 
%0 Journal Article
%A K. E. Feldman
%T An equivariant analog of the Poincaré–Hopf theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 303-318
%V 267
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a22/
%G ru
%F ZNSL_2000_267_a22
K. E. Feldman. An equivariant analog of the Poincaré–Hopf theorem. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 303-318. http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a22/