The fourth oriented cobordism group~$\Omega _4$ is isomorphic to~$\mathbb Z$
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 282-289

Voir la notice de l'article provenant de la source Math-Net.Ru

V. A. Rokhlin theorem indicated in the title is proved with using generic maps.
@article{ZNSL_2000_267_a20,
     author = {A. Sz\'{u}cs},
     title = {The fourth oriented cobordism group~$\Omega _4$ is isomorphic to~$\mathbb Z$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {282--289},
     publisher = {mathdoc},
     volume = {267},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a20/}
}
TY  - JOUR
AU  - A. Szűcs
TI  - The fourth oriented cobordism group~$\Omega _4$ is isomorphic to~$\mathbb Z$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 282
EP  - 289
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a20/
LA  - en
ID  - ZNSL_2000_267_a20
ER  - 
%0 Journal Article
%A A. Szűcs
%T The fourth oriented cobordism group~$\Omega _4$ is isomorphic to~$\mathbb Z$
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 282-289
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a20/
%G en
%F ZNSL_2000_267_a20
A. Szűcs. The fourth oriented cobordism group~$\Omega _4$ is isomorphic to~$\mathbb Z$. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 282-289. http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a20/