Triangulations of manifolds and combinatorial bundle theory: an announcement
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 46-52

Voir la notice de l'article provenant de la source Math-Net.Ru

For a given compact $\mathrm{PL}$-manifold $X$, studied is the category $\mathbf{CM}(X)$ of combinatorial-manifold structures on $X$, whose objects of $\mathbf{CM}(X)$ are abstract simplicial complexes $S$ with geometric realization $\mathrm{PL}$-homeomorphic to $X$, and while the morphisms are “combinatorial subdivisions.” The geometric realization $B\mathbf{CM}(X)$ of the nerve of $\mathbf{CM}(X)$ is announced to be homotopy equivalent to the classifying space $B\mathrm{PL}(X)$ of the simplicial group $\mathrm{PL}(X)$: $B\mathbf{CM}(X)\approx B\mathrm{PL}(X)$.
@article{ZNSL_2000_267_a2,
     author = {L. Anderson and N. E. Mnev},
     title = {Triangulations of manifolds and combinatorial bundle theory: an announcement},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {46--52},
     publisher = {mathdoc},
     volume = {267},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a2/}
}
TY  - JOUR
AU  - L. Anderson
AU  - N. E. Mnev
TI  - Triangulations of manifolds and combinatorial bundle theory: an announcement
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 46
EP  - 52
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a2/
LA  - en
ID  - ZNSL_2000_267_a2
ER  - 
%0 Journal Article
%A L. Anderson
%A N. E. Mnev
%T Triangulations of manifolds and combinatorial bundle theory: an announcement
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 46-52
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a2/
%G en
%F ZNSL_2000_267_a2
L. Anderson; N. E. Mnev. Triangulations of manifolds and combinatorial bundle theory: an announcement. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 46-52. http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a2/