Triangulations of manifolds and combinatorial bundle theory: an announcement
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 46-52
Cet article a éte moissonné depuis la source Math-Net.Ru
For a given compact $\mathrm{PL}$-manifold $X$, studied is the category $\mathbf{CM}(X)$ of combinatorial-manifold structures on $X$, whose objects of $\mathbf{CM}(X)$ are abstract simplicial complexes $S$ with geometric realization $\mathrm{PL}$-homeomorphic to $X$, and while the morphisms are “combinatorial subdivisions.” The geometric realization $B\mathbf{CM}(X)$ of the nerve of $\mathbf{CM}(X)$ is announced to be homotopy equivalent to the classifying space $B\mathrm{PL}(X)$ of the simplicial group $\mathrm{PL}(X)$: $B\mathbf{CM}(X)\approx B\mathrm{PL}(X)$.
@article{ZNSL_2000_267_a2,
author = {L. Anderson and N. E. Mnev},
title = {Triangulations of manifolds and combinatorial bundle theory: an announcement},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {46--52},
year = {2000},
volume = {267},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a2/}
}
L. Anderson; N. E. Mnev. Triangulations of manifolds and combinatorial bundle theory: an announcement. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 46-52. http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a2/