Two theorems of Rokhlin
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 274-281

Voir la notice de l'article provenant de la source Math-Net.Ru

Two theorems due to V. A. Rokhlin are proved: on the third stable homotopy group of spheres: $\pi_{n+3} (S^n)\approx\mathbb Z_{24}$ for $n\ge5$; and on the divisibility by 16 of the signature of a spin 4-manifold. The proofs use immersion theory.
@article{ZNSL_2000_267_a19,
     author = {A. Sz\'{u}cs},
     title = {Two theorems of {Rokhlin}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {274--281},
     publisher = {mathdoc},
     volume = {267},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a19/}
}
TY  - JOUR
AU  - A. Szűcs
TI  - Two theorems of Rokhlin
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 274
EP  - 281
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a19/
LA  - en
ID  - ZNSL_2000_267_a19
ER  - 
%0 Journal Article
%A A. Szűcs
%T Two theorems of Rokhlin
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 274-281
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a19/
%G en
%F ZNSL_2000_267_a19
A. Szűcs. Two theorems of Rokhlin. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 274-281. http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a19/