Two theorems of Rokhlin
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 274-281
Voir la notice de l'article provenant de la source Math-Net.Ru
Two theorems due to V. A. Rokhlin are proved: on the third stable homotopy group of spheres: $\pi_{n+3} (S^n)\approx\mathbb Z_{24}$ for $n\ge5$; and on the divisibility by 16 of the signature of a spin 4-manifold. The proofs use immersion theory.
@article{ZNSL_2000_267_a19,
author = {A. Sz\'{u}cs},
title = {Two theorems of {Rokhlin}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {274--281},
publisher = {mathdoc},
volume = {267},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a19/}
}
A. Szűcs. Two theorems of Rokhlin. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 274-281. http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a19/