Links on $T$-polyhedra: examples of Gusarov's cubic spaces
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 260-272
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Any link in $\mathbb R^3$ is isotopic to a link lying on the union $T$ of three half-planes with common boundary line. In an earlier paper, the author developed a nontrivial theory of links and knots on $T$. In the present paper, the results are interpreted in the context of M. Gusarov's theory of invariants of finite degree
(the theory of “cubic spaces”).
			
            
            
            
          
        
      @article{ZNSL_2000_267_a17,
     author = {P. V. Svetlov},
     title = {Links on $T$-polyhedra: examples of {Gusarov's} cubic spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {260--272},
     publisher = {mathdoc},
     volume = {267},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a17/}
}
                      
                      
                    P. V. Svetlov. Links on $T$-polyhedra: examples of Gusarov's cubic spaces. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 260-272. http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a17/