Links on $T$-polyhedra: examples of Gusarov's cubic spaces
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 260-272
Cet article a éte moissonné depuis la source Math-Net.Ru
Any link in $\mathbb R^3$ is isotopic to a link lying on the union $T$ of three half-planes with common boundary line. In an earlier paper, the author developed a nontrivial theory of links and knots on $T$. In the present paper, the results are interpreted in the context of M. Gusarov's theory of invariants of finite degree (the theory of “cubic spaces”).
@article{ZNSL_2000_267_a17,
author = {P. V. Svetlov},
title = {Links on $T$-polyhedra: examples of {Gusarov's} cubic spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {260--272},
year = {2000},
volume = {267},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a17/}
}
P. V. Svetlov. Links on $T$-polyhedra: examples of Gusarov's cubic spaces. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 260-272. http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a17/