A classification approach for open manifolds
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 9-45

Voir la notice de l'article provenant de la source Math-Net.Ru

On the set of all smooth Riemannian manifolds, a number of different uniform structures are studied, some of which are defined for the more general class of proper metric spaces, while the others take into account the smooth and Riemannian structures. Appropriate bordism theories are presented. Several homology theories that do not distinguish manifolds in one component of a given uniform structure, but can distinguish manifolds in different components are discussed. The proofs are omitted.
@article{ZNSL_2000_267_a1,
     author = {J. Eichhorn},
     title = {A classification approach for open manifolds},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {9--45},
     publisher = {mathdoc},
     volume = {267},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a1/}
}
TY  - JOUR
AU  - J. Eichhorn
TI  - A classification approach for open manifolds
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 9
EP  - 45
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a1/
LA  - en
ID  - ZNSL_2000_267_a1
ER  - 
%0 Journal Article
%A J. Eichhorn
%T A classification approach for open manifolds
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 9-45
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a1/
%G en
%F ZNSL_2000_267_a1
J. Eichhorn. A classification approach for open manifolds. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 9-45. http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a1/