On the structure of $k$-connected graphs
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 76-106

Voir la notice de l'article provenant de la source Math-Net.Ru

For $k$-connected graph we determine a notion of block and build a block tree. These constructions generalize well known and important in graph theory notion of block for the case of $k$-connected graph. With the help of these notions we describe such set $W$ of vertices of $k$-connected graph, that one can delete from graph any subset of $W$ without less of vertex connectivity.
@article{ZNSL_2000_266_a6,
     author = {D. V. Karpov and A. V. Pastor},
     title = {On the structure of $k$-connected graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {76--106},
     publisher = {mathdoc},
     volume = {266},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a6/}
}
TY  - JOUR
AU  - D. V. Karpov
AU  - A. V. Pastor
TI  - On the structure of $k$-connected graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 76
EP  - 106
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a6/
LA  - ru
ID  - ZNSL_2000_266_a6
ER  - 
%0 Journal Article
%A D. V. Karpov
%A A. V. Pastor
%T On the structure of $k$-connected graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 76-106
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a6/
%G ru
%F ZNSL_2000_266_a6
D. V. Karpov; A. V. Pastor. On the structure of $k$-connected graphs. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 76-106. http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a6/