Torus actions, equivariant moment-angle complexes, and coordinate subspace arrangements.
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 29-50

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the cohomology algebra of the complement of a coordinate subspace arrangement in $m$-dimensional complex space is isomorphic to the cohomology algebra of Stanley–Reisner face ring of a certain simplicial complex on $m$ vertices. Then we calculate the latter cohomology algebra by means of the standard Koszul resolution of polynomial ring. To prove these facts we construct an equivariant with respect to the torus action homotopy equivalence between the complement of a coordinate subspace arrangement and the moment-angle complex defined by the simplicial complex, then investigate the equivariant topology of the moment-angle complex and apply the Eilenberg–Moore spectral sequence.
@article{ZNSL_2000_266_a3,
     author = {V. M. Buchstaber and T. E. Panov},
     title = {Torus actions, equivariant moment-angle complexes, and coordinate subspace arrangements.},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {29--50},
     publisher = {mathdoc},
     volume = {266},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a3/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - T. E. Panov
TI  - Torus actions, equivariant moment-angle complexes, and coordinate subspace arrangements.
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 29
EP  - 50
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a3/
LA  - ru
ID  - ZNSL_2000_266_a3
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A T. E. Panov
%T Torus actions, equivariant moment-angle complexes, and coordinate subspace arrangements.
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 29-50
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a3/
%G ru
%F ZNSL_2000_266_a3
V. M. Buchstaber; T. E. Panov. Torus actions, equivariant moment-angle complexes, and coordinate subspace arrangements.. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 29-50. http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a3/