Skew products and ergodic theorems for group actions
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 13-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We obtain new ergodic theorems for an action of the free semi-group on a probability space by measure-preserving maps. Our method consists in associating with the original semi-group action a skew product over the shift on the space of infinite one-sided sequences of generators of the semi-group, and then integrating Birkhoff–Khinchin ergodic theorems along the base of the skew product.
@article{ZNSL_2000_266_a2,
     author = {A. I. Bufetov},
     title = {Skew products and ergodic theorems for group actions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {13--28},
     year = {2000},
     volume = {266},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a2/}
}
TY  - JOUR
AU  - A. I. Bufetov
TI  - Skew products and ergodic theorems for group actions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 13
EP  - 28
VL  - 266
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a2/
LA  - ru
ID  - ZNSL_2000_266_a2
ER  - 
%0 Journal Article
%A A. I. Bufetov
%T Skew products and ergodic theorems for group actions
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 13-28
%V 266
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a2/
%G ru
%F ZNSL_2000_266_a2
A. I. Bufetov. Skew products and ergodic theorems for group actions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 13-28. http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a2/