Nielsen zeta function, 3-manifolds, and asymptotic expansions in Nielsen theory
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 312-329
Voir la notice du chapitre de livre
We prove that the Nielsen zeta function is a rational function or a radical of a rational function for orientation- preserving homeomorphisms on closed orientable 3-dimensional manifolds which are special Haken or Seifert manifolds. In the case of pseudo-Anosov homeomorphism of surface we compute an asymptotics for the number of twisted conjugacy classes or for the number of Nielsen fixed point classes whose norm is at most $x$.
@article{ZNSL_2000_266_a16,
author = {A. L. Fel'shtyn},
title = {Nielsen zeta function, 3-manifolds, and asymptotic expansions in {Nielsen} theory},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {312--329},
year = {2000},
volume = {266},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a16/}
}
A. L. Fel'shtyn. Nielsen zeta function, 3-manifolds, and asymptotic expansions in Nielsen theory. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 312-329. http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a16/