Nielsen zeta function, 3-manifolds, and asymptotic expansions in Nielsen theory
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 312-329

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the Nielsen zeta function is a rational function or a radical of a rational function for orientation- preserving homeomorphisms on closed orientable 3-dimensional manifolds which are special Haken or Seifert manifolds. In the case of pseudo-Anosov homeomorphism of surface we compute an asymptotics for the number of twisted conjugacy classes or for the number of Nielsen fixed point classes whose norm is at most $x$.
@article{ZNSL_2000_266_a16,
     author = {A. L. Fel'shtyn},
     title = {Nielsen zeta function, 3-manifolds, and  asymptotic expansions in {Nielsen} theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {312--329},
     publisher = {mathdoc},
     volume = {266},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a16/}
}
TY  - JOUR
AU  - A. L. Fel'shtyn
TI  - Nielsen zeta function, 3-manifolds, and  asymptotic expansions in Nielsen theory
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 312
EP  - 329
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a16/
LA  - en
ID  - ZNSL_2000_266_a16
ER  - 
%0 Journal Article
%A A. L. Fel'shtyn
%T Nielsen zeta function, 3-manifolds, and  asymptotic expansions in Nielsen theory
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 312-329
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a16/
%G en
%F ZNSL_2000_266_a16
A. L. Fel'shtyn. Nielsen zeta function, 3-manifolds, and  asymptotic expansions in Nielsen theory. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 312-329. http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a16/