Efficient smooth stratification of an algebraic variety in zero characteristic and its applications
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 254-311

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $V$ be an algebraic variety given by a system of homogeneous polynomials equations with degrees less than $d$ in $n+1$ variables. In zero-characteristic we prove that there is a smooth cover (smooth stratification) of $V$ with the number of strata at most $C(n)d^n$ (respectively $C(n)d^{n(n+1)/2}$) and degrees of strata at most $C(n)d^n$ where $C(n)>0$ depends only on $n$. Algorithms are suggested for constructing regular sequences and sequences of local parameters of irreducible components of $V$, computing dimension of a real algebraic variety with the complexity polynomial in $C(n)d^n$ and the size of input.
@article{ZNSL_2000_266_a15,
     author = {A. L. Chistov},
     title = {Efficient smooth stratification of an algebraic variety in zero characteristic and its applications},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {254--311},
     publisher = {mathdoc},
     volume = {266},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a15/}
}
TY  - JOUR
AU  - A. L. Chistov
TI  - Efficient smooth stratification of an algebraic variety in zero characteristic and its applications
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 254
EP  - 311
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a15/
LA  - ru
ID  - ZNSL_2000_266_a15
ER  - 
%0 Journal Article
%A A. L. Chistov
%T Efficient smooth stratification of an algebraic variety in zero characteristic and its applications
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 254-311
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a15/
%G ru
%F ZNSL_2000_266_a15
A. L. Chistov. Efficient smooth stratification of an algebraic variety in zero characteristic and its applications. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 254-311. http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a15/