Efficient smooth stratification of an algebraic variety in zero characteristic and its applications
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 254-311
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $V$ be an algebraic variety given by a system of homogeneous polynomials equations with degrees less than $d$ in $n+1$ variables. In zero-characteristic we prove that there is a smooth cover (smooth stratification) of $V$ with the number of strata at most $C(n)d^n$ (respectively $C(n)d^{n(n+1)/2}$) and degrees of strata at most $C(n)d^n$ where $C(n)>0$ depends only on $n$. Algorithms are suggested for constructing regular sequences and sequences of local parameters of irreducible components of $V$, computing dimension of a real algebraic variety with the complexity polynomial in $C(n)d^n$ and the
size of input.
			
            
            
            
          
        
      @article{ZNSL_2000_266_a15,
     author = {A. L. Chistov},
     title = {Efficient smooth stratification of an algebraic variety in zero characteristic and its applications},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {254--311},
     publisher = {mathdoc},
     volume = {266},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a15/}
}
                      
                      
                    TY - JOUR AU - A. L. Chistov TI - Efficient smooth stratification of an algebraic variety in zero characteristic and its applications JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 254 EP - 311 VL - 266 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a15/ LA - ru ID - ZNSL_2000_266_a15 ER -
A. L. Chistov. Efficient smooth stratification of an algebraic variety in zero characteristic and its applications. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 254-311. http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a15/