Thom isomorphism in the ``twice'' equivariant $K$-theory of $C^*$-fibrations
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 245-253

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem on the Thom isomorphism for the $K$-theory of fibrations whose fiber is a projective module over a $C^*$-algebra is proved in the situation where a compact Lie group acts on the algebra and on the total space as well.
@article{ZNSL_2000_266_a14,
     author = {E. V. Troitskii},
     title = {Thom isomorphism in the ``twice'' equivariant $K$-theory of $C^*$-fibrations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {245--253},
     publisher = {mathdoc},
     volume = {266},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a14/}
}
TY  - JOUR
AU  - E. V. Troitskii
TI  - Thom isomorphism in the ``twice'' equivariant $K$-theory of $C^*$-fibrations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 245
EP  - 253
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a14/
LA  - ru
ID  - ZNSL_2000_266_a14
ER  - 
%0 Journal Article
%A E. V. Troitskii
%T Thom isomorphism in the ``twice'' equivariant $K$-theory of $C^*$-fibrations
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 245-253
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a14/
%G ru
%F ZNSL_2000_266_a14
E. V. Troitskii. Thom isomorphism in the ``twice'' equivariant $K$-theory of $C^*$-fibrations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 245-253. http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a14/