Thom isomorphism in the ``twice'' equivariant $K$-theory of $C^*$-fibrations
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 245-253
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A theorem on the Thom isomorphism for the $K$-theory of fibrations whose fiber is a projective module over a $C^*$-algebra is proved in the situation where a compact Lie group acts on the algebra and on the total space
as well.
			
            
            
            
          
        
      @article{ZNSL_2000_266_a14,
     author = {E. V. Troitskii},
     title = {Thom isomorphism in the ``twice'' equivariant $K$-theory of $C^*$-fibrations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {245--253},
     publisher = {mathdoc},
     volume = {266},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a14/}
}
                      
                      
                    E. V. Troitskii. Thom isomorphism in the ``twice'' equivariant $K$-theory of $C^*$-fibrations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 245-253. http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a14/