Normed groups and their applications in noncommutative differential geometry
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 234-244

Voir la notice de l'article provenant de la source Math-Net.Ru

Our work is devoted to abstract study of so-called normed semi-groups, i.e., semi-groups having both rich topological and rich algebraic structure, which arise in some problems of non-commutative geometry. We consider in details the most interesting example, namely, an Abel semi-group $\mathscr N(A)$, where $A$ is a von Neumann algebra. The definition of this semi-group is based on the notion of stable equivalence of normal elements of $W^*$-algebras which generalizes the notion of stable equivalence of projectors.
@article{ZNSL_2000_266_a13,
     author = {A. A. Pavlov},
     title = {Normed groups and their applications in noncommutative differential geometry},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {234--244},
     publisher = {mathdoc},
     volume = {266},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a13/}
}
TY  - JOUR
AU  - A. A. Pavlov
TI  - Normed groups and their applications in noncommutative differential geometry
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 234
EP  - 244
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a13/
LA  - ru
ID  - ZNSL_2000_266_a13
ER  - 
%0 Journal Article
%A A. A. Pavlov
%T Normed groups and their applications in noncommutative differential geometry
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 234-244
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a13/
%G ru
%F ZNSL_2000_266_a13
A. A. Pavlov. Normed groups and their applications in noncommutative differential geometry. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 234-244. http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a13/