Convex hulls of integral points
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 188-217

Voir la notice de l'article provenant de la source Math-Net.Ru

The convex hull of all integral points contained in a compact polyhedron $C$ is obviously a compact polyhedron. When $C$ is not compact, the convex hull $K$ of its integral points need not be a closed set. However under some natural assumptions, $K$ is a closed set and a generalized polyhedron.
@article{ZNSL_2000_266_a11,
     author = {J.-O. Moussafir},
     title = {Convex hulls of integral points},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {188--217},
     publisher = {mathdoc},
     volume = {266},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a11/}
}
TY  - JOUR
AU  - J.-O. Moussafir
TI  - Convex hulls of integral points
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 188
EP  - 217
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a11/
LA  - en
ID  - ZNSL_2000_266_a11
ER  - 
%0 Journal Article
%A J.-O. Moussafir
%T Convex hulls of integral points
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 188-217
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a11/
%G en
%F ZNSL_2000_266_a11
J.-O. Moussafir. Convex hulls of integral points. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 188-217. http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a11/