Convex hulls of integral points
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 188-217
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The convex hull of all integral points contained in a compact polyhedron $C$ is obviously a compact polyhedron. When $C$ is not compact, the convex hull $K$ of its integral points need not be a closed set. However under some natural assumptions, $K$ is a closed set and a generalized polyhedron.
			
            
            
            
          
        
      @article{ZNSL_2000_266_a11,
     author = {J.-O. Moussafir},
     title = {Convex hulls of integral points},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {188--217},
     publisher = {mathdoc},
     volume = {266},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a11/}
}
                      
                      
                    J.-O. Moussafir. Convex hulls of integral points. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 188-217. http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a11/