Foliations, groupoids and Baum-Connes conjecture
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 169-187

Voir la notice de l'article provenant de la source Math-Net.Ru

Baum–Connes conjecture looks for the establishment of an analogue of the well-known isomorphism between the topological K-theory of a locally compact space $M$ and the analytical K-theory of the C*-algebra of continuous functions on $M$ vanishing at infinity, for the leaf spaces of foliated manifolds. In this work we describe the principal notions involved in the statement of the conjecture, and we point out the actual status of it.
@article{ZNSL_2000_266_a10,
     author = {M. Macho-Stadler},
     title = {Foliations, groupoids and {Baum-Connes} conjecture},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {169--187},
     publisher = {mathdoc},
     volume = {266},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a10/}
}
TY  - JOUR
AU  - M. Macho-Stadler
TI  - Foliations, groupoids and Baum-Connes conjecture
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 169
EP  - 187
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a10/
LA  - en
ID  - ZNSL_2000_266_a10
ER  - 
%0 Journal Article
%A M. Macho-Stadler
%T Foliations, groupoids and Baum-Connes conjecture
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 169-187
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a10/
%G en
%F ZNSL_2000_266_a10
M. Macho-Stadler. Foliations, groupoids and Baum-Connes conjecture. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 169-187. http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a10/