Parabolic equation and Pearcey-type integral for a transmitted wavefield
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 140-149

Voir la notice de l'article provenant de la source Math-Net.Ru

High-frequence wavefield of a point source situated near an interface of two homogeneous media and placed in the faster medium is considered. We are interested in description of a vicinity the critical ray in the slower medium. The description is given via the parabolic equation method. The result involves a Pearcey-type integral. The approach is not based on the Fourier method and can be generalised to inhomogeneous media with curved interfaces.
@article{ZNSL_2000_264_a8,
     author = {A. P. Kiselev and A. S. Starkov},
     title = {Parabolic equation and {Pearcey-type} integral for a transmitted wavefield},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--149},
     publisher = {mathdoc},
     volume = {264},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a8/}
}
TY  - JOUR
AU  - A. P. Kiselev
AU  - A. S. Starkov
TI  - Parabolic equation and Pearcey-type integral for a transmitted wavefield
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 140
EP  - 149
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a8/
LA  - ru
ID  - ZNSL_2000_264_a8
ER  - 
%0 Journal Article
%A A. P. Kiselev
%A A. S. Starkov
%T Parabolic equation and Pearcey-type integral for a transmitted wavefield
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 140-149
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a8/
%G ru
%F ZNSL_2000_264_a8
A. P. Kiselev; A. S. Starkov. Parabolic equation and Pearcey-type integral for a transmitted wavefield. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 140-149. http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a8/