Parabolic equation and Pearcey-type integral for a transmitted wavefield
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 140-149
Voir la notice de l'article provenant de la source Math-Net.Ru
High-frequence wavefield of a point source situated near an interface of two homogeneous media and placed in the faster medium is considered. We are interested in description of a vicinity the critical ray in the slower medium. The description is given via the parabolic equation method. The result involves a Pearcey-type integral. The approach is not based on the Fourier method and can be generalised to inhomogeneous media
with curved interfaces.
@article{ZNSL_2000_264_a8,
author = {A. P. Kiselev and A. S. Starkov},
title = {Parabolic equation and {Pearcey-type} integral for a transmitted wavefield},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {140--149},
publisher = {mathdoc},
volume = {264},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a8/}
}
TY - JOUR AU - A. P. Kiselev AU - A. S. Starkov TI - Parabolic equation and Pearcey-type integral for a transmitted wavefield JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 140 EP - 149 VL - 264 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a8/ LA - ru ID - ZNSL_2000_264_a8 ER -
A. P. Kiselev; A. S. Starkov. Parabolic equation and Pearcey-type integral for a transmitted wavefield. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 140-149. http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a8/