Diffraction of electromagnetic waves from different perturbations of impedance on the interface between two media
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 101-121

Voir la notice de l'article provenant de la source Math-Net.Ru

The problems of the diffraction of the electromagnetic flat wave, scattered from small perturbations of impedance on small and finite segments on the interface between two media, are investigated. The impedance perturbations are subjected to linear, guadratic or jump-like laws.
@article{ZNSL_2000_264_a6,
     author = {N. Ya. Kirpichnikova and V. B. Philippov and A. S. Kirpichnikova},
     title = {Diffraction of electromagnetic waves from different perturbations of impedance on the interface between two media},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {101--121},
     publisher = {mathdoc},
     volume = {264},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a6/}
}
TY  - JOUR
AU  - N. Ya. Kirpichnikova
AU  - V. B. Philippov
AU  - A. S. Kirpichnikova
TI  - Diffraction of electromagnetic waves from different perturbations of impedance on the interface between two media
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 101
EP  - 121
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a6/
LA  - ru
ID  - ZNSL_2000_264_a6
ER  - 
%0 Journal Article
%A N. Ya. Kirpichnikova
%A V. B. Philippov
%A A. S. Kirpichnikova
%T Diffraction of electromagnetic waves from different perturbations of impedance on the interface between two media
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 101-121
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a6/
%G ru
%F ZNSL_2000_264_a6
N. Ya. Kirpichnikova; V. B. Philippov; A. S. Kirpichnikova. Diffraction of electromagnetic waves from different perturbations of impedance on the interface between two media. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 101-121. http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a6/