On boundary value problems for a version of Maxwell equations
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 311-320
Voir la notice de l'article provenant de la source Math-Net.Ru
Boundary value problem for the system of equations
$$
\operatorname{rot}\vec H-\sigma\vec E=0, \quad \operatorname{rot}\vec E+\mu\vec H=0,
$$
(where $\sigma$ and $\mu$ are positive constants) in a domain $\Omega\Subset R^3$ are considered. Boundary conditions are
$$
H_n\big|_{\partial\Omega}=\varphi(x)\big|_{\partial\Omega},\ \ E_n\big|_{\partial\Omega}=f(x)\big|_{\partial\Omega}.
$$
The correcntess of the problem is proved if $\partial\Omega$ is smooth. The potential theory is used to get this result.
@article{ZNSL_2000_264_a20,
author = {Sh. Sakhaev},
title = {On boundary value problems for a version of {Maxwell} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {311--320},
publisher = {mathdoc},
volume = {264},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a20/}
}
Sh. Sakhaev. On boundary value problems for a version of Maxwell equations. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 311-320. http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a20/