On boundary value problems for a version of Maxwell equations
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 311-320

Voir la notice de l'article provenant de la source Math-Net.Ru

Boundary value problem for the system of equations $$ \operatorname{rot}\vec H-\sigma\vec E=0, \quad \operatorname{rot}\vec E+\mu\vec H=0, $$ (where $\sigma$ and $\mu$ are positive constants) in a domain $\Omega\Subset R^3$ are considered. Boundary conditions are $$ H_n\big|_{\partial\Omega}=\varphi(x)\big|_{\partial\Omega},\ \ E_n\big|_{\partial\Omega}=f(x)\big|_{\partial\Omega}. $$ The correcntess of the problem is proved if $\partial\Omega$ is smooth. The potential theory is used to get this result.
@article{ZNSL_2000_264_a20,
     author = {Sh. Sakhaev},
     title = {On boundary value problems for a version of {Maxwell} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {311--320},
     publisher = {mathdoc},
     volume = {264},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a20/}
}
TY  - JOUR
AU  - Sh. Sakhaev
TI  - On boundary value problems for a version of Maxwell equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 311
EP  - 320
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a20/
LA  - ru
ID  - ZNSL_2000_264_a20
ER  - 
%0 Journal Article
%A Sh. Sakhaev
%T On boundary value problems for a version of Maxwell equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 311-320
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a20/
%G ru
%F ZNSL_2000_264_a20
Sh. Sakhaev. On boundary value problems for a version of Maxwell equations. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 311-320. http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a20/