Propagation of the discontinueties in a system of two interactive wave equations
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 299-310
Voir la notice de l'article provenant de la source Math-Net.Ru
Propagation of the discontinueties in a system of two wave equations interacting via a potential is described in the case when the velocities coincide at a point. It is shown that a new wave appears behind this point and discontinueties on its wave front contain noninteger derivatives.
@article{ZNSL_2000_264_a19,
author = {M. M. Popov and I. N. Shchitov},
title = {Propagation of the discontinueties in a system of two interactive wave equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {299--310},
publisher = {mathdoc},
volume = {264},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a19/}
}
TY - JOUR AU - M. M. Popov AU - I. N. Shchitov TI - Propagation of the discontinueties in a system of two interactive wave equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 299 EP - 310 VL - 264 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a19/ LA - ru ID - ZNSL_2000_264_a19 ER -
M. M. Popov; I. N. Shchitov. Propagation of the discontinueties in a system of two interactive wave equations. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 299-310. http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a19/