Resonance interaction of bending and shear modes in a non-uniform Timoshenko beam
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 258-284
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Interaction of two modes is considered which arise when their phase velocities intersect at a single point, in the high-frequency regime. The analogous problem of singularity propagation is also considered.
			
            
            
            
          
        
      @article{ZNSL_2000_264_a17,
     author = {M. V. Perel' and I. V. Fialkovskii and A. P. Kiselev},
     title = {Resonance interaction of bending and shear modes in a non-uniform {Timoshenko} beam},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {258--284},
     publisher = {mathdoc},
     volume = {264},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a17/}
}
                      
                      
                    TY - JOUR AU - M. V. Perel' AU - I. V. Fialkovskii AU - A. P. Kiselev TI - Resonance interaction of bending and shear modes in a non-uniform Timoshenko beam JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 258 EP - 284 VL - 264 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a17/ LA - ru ID - ZNSL_2000_264_a17 ER -
%0 Journal Article %A M. V. Perel' %A I. V. Fialkovskii %A A. P. Kiselev %T Resonance interaction of bending and shear modes in a non-uniform Timoshenko beam %J Zapiski Nauchnykh Seminarov POMI %D 2000 %P 258-284 %V 264 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a17/ %G ru %F ZNSL_2000_264_a17
M. V. Perel'; I. V. Fialkovskii; A. P. Kiselev. Resonance interaction of bending and shear modes in a non-uniform Timoshenko beam. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 258-284. http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a17/