A study of an acoustical wave-guide with longitudinal partitions using the theory of the multi-degree-of-freedom systems
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 250-257
Voir la notice de l'article provenant de la source Math-Net.Ru
A system of nonlinear equations for the normal frequencies and the eigenfunctions of a cross section of an acoustic wave-guide with two longitudinal elastic partitions, linked with a raw of springs has been derived in the papers [1–2]. Such acoustic system supposed to be a model of the microstructure of the media canal of the mammalian cochlea. A numerical solution of these equations and a graphical analysis are undertaken
in the present paper.
@article{ZNSL_2000_264_a16,
author = {S. M. Novoselova},
title = {A study of an acoustical wave-guide with longitudinal partitions using the theory of the multi-degree-of-freedom systems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {250--257},
publisher = {mathdoc},
volume = {264},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a16/}
}
TY - JOUR AU - S. M. Novoselova TI - A study of an acoustical wave-guide with longitudinal partitions using the theory of the multi-degree-of-freedom systems JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 250 EP - 257 VL - 264 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a16/ LA - ru ID - ZNSL_2000_264_a16 ER -
%0 Journal Article %A S. M. Novoselova %T A study of an acoustical wave-guide with longitudinal partitions using the theory of the multi-degree-of-freedom systems %J Zapiski Nauchnykh Seminarov POMI %D 2000 %P 250-257 %V 264 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a16/ %G ru %F ZNSL_2000_264_a16
S. M. Novoselova. A study of an acoustical wave-guide with longitudinal partitions using the theory of the multi-degree-of-freedom systems. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 250-257. http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a16/