A study of an acoustical wave-guide with longitudinal partitions using the theory of the multi-degree-of-freedom systems
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 250-257

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of nonlinear equations for the normal frequencies and the eigenfunctions of a cross section of an acoustic wave-guide with two longitudinal elastic partitions, linked with a raw of springs has been derived in the papers [1–2]. Such acoustic system supposed to be a model of the microstructure of the media canal of the mammalian cochlea. A numerical solution of these equations and a graphical analysis are undertaken in the present paper.
@article{ZNSL_2000_264_a16,
     author = {S. M. Novoselova},
     title = {A study of an acoustical wave-guide with longitudinal partitions using the theory of the multi-degree-of-freedom systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {250--257},
     publisher = {mathdoc},
     volume = {264},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a16/}
}
TY  - JOUR
AU  - S. M. Novoselova
TI  - A study of an acoustical wave-guide with longitudinal partitions using the theory of the multi-degree-of-freedom systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 250
EP  - 257
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a16/
LA  - ru
ID  - ZNSL_2000_264_a16
ER  - 
%0 Journal Article
%A S. M. Novoselova
%T A study of an acoustical wave-guide with longitudinal partitions using the theory of the multi-degree-of-freedom systems
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 250-257
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a16/
%G ru
%F ZNSL_2000_264_a16
S. M. Novoselova. A study of an acoustical wave-guide with longitudinal partitions using the theory of the multi-degree-of-freedom systems. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 250-257. http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a16/