About the sources acting on the free boundary of porous Biot medium and about reflection on this boundary
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 217-237

Voir la notice de l'article provenant de la source Math-Net.Ru

A homogeneous isotropic porous Biot half-space $z\ge0$ with free boundary $z=0$ is considered. This half-space is excited by the point sources situated on the boundary $z=0$ and applied to the elastic phase. Four sources: 1) Normal force, 2) Center of tangential forces, 3) Center of rotation, and 4) Tangential force are considered. For all sources the wave fields are established. The relation between the wave fields in the porous medium and the corresponding wave fields in the elastic medium is investigated. The reflection coefficients on the free boundary of the porous Biot half-space are defined and studied.
@article{ZNSL_2000_264_a14,
     author = {L. A. Molotkov},
     title = {About the sources acting on the free boundary of porous {Biot} medium and about reflection on this boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {217--237},
     publisher = {mathdoc},
     volume = {264},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a14/}
}
TY  - JOUR
AU  - L. A. Molotkov
TI  - About the sources acting on the free boundary of porous Biot medium and about reflection on this boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 217
EP  - 237
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a14/
LA  - ru
ID  - ZNSL_2000_264_a14
ER  - 
%0 Journal Article
%A L. A. Molotkov
%T About the sources acting on the free boundary of porous Biot medium and about reflection on this boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 217-237
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a14/
%G ru
%F ZNSL_2000_264_a14
L. A. Molotkov. About the sources acting on the free boundary of porous Biot medium and about reflection on this boundary. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 217-237. http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a14/