Attenuating resonance modes in the cylindrical waveguide, placed in an elastic medium
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 182-188
Voir la notice de l'article provenant de la source Math-Net.Ru
The interference attenuating waves propagating in the cylindrical elastic waveguide, placed in an elastic medium
are considered. The group velocity of waves is intermediate between that of $P$-wave and that of $S$-wave, the phase velocity equal that $P$-wave. The frequency of wave is almost constant and determined by a requirement of the constructive inerference. The dispersion and attenuation of these waves are described.
@article{ZNSL_2000_264_a11,
author = {P. V. Krauklis and L. A. Krauklis},
title = {Attenuating resonance modes in the cylindrical waveguide, placed in an elastic medium},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {182--188},
publisher = {mathdoc},
volume = {264},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a11/}
}
TY - JOUR AU - P. V. Krauklis AU - L. A. Krauklis TI - Attenuating resonance modes in the cylindrical waveguide, placed in an elastic medium JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 182 EP - 188 VL - 264 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a11/ LA - ru ID - ZNSL_2000_264_a11 ER -
P. V. Krauklis; L. A. Krauklis. Attenuating resonance modes in the cylindrical waveguide, placed in an elastic medium. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 182-188. http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a11/