Scattering of a highfrequency wave by the vertex of an arbitrary cone. (Singular directions.)
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 7-21
Voir la notice de l'article provenant de la source Math-Net.Ru
A new approach to the obtaining of the analytical expression for the wave scattered by an arbitrary cone vertex in the singular directions is considered. The spherical front of the wave, propagating from the vertex of the cone tangents the front of the wave, reflected by the cone surface in this “singular” directions. The wave field is expressed in the terms of the parabolic cylinder functions.
@article{ZNSL_2000_264_a0,
author = {V. M. Babich and D. B. Dement'ev and B. A. Samokish and V. P. Smyshlyaev},
title = {Scattering of a highfrequency wave by the vertex of an arbitrary cone. {(Singular} directions.)},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--21},
publisher = {mathdoc},
volume = {264},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a0/}
}
TY - JOUR AU - V. M. Babich AU - D. B. Dement'ev AU - B. A. Samokish AU - V. P. Smyshlyaev TI - Scattering of a highfrequency wave by the vertex of an arbitrary cone. (Singular directions.) JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 7 EP - 21 VL - 264 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a0/ LA - ru ID - ZNSL_2000_264_a0 ER -
%0 Journal Article %A V. M. Babich %A D. B. Dement'ev %A B. A. Samokish %A V. P. Smyshlyaev %T Scattering of a highfrequency wave by the vertex of an arbitrary cone. (Singular directions.) %J Zapiski Nauchnykh Seminarov POMI %D 2000 %P 7-21 %V 264 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a0/ %G ru %F ZNSL_2000_264_a0
V. M. Babich; D. B. Dement'ev; B. A. Samokish; V. P. Smyshlyaev. Scattering of a highfrequency wave by the vertex of an arbitrary cone. (Singular directions.). Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 7-21. http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a0/