Scattering of a highfrequency wave by the vertex of an arbitrary cone. (Singular directions.)
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 7-21

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to the obtaining of the analytical expression for the wave scattered by an arbitrary cone vertex in the singular directions is considered. The spherical front of the wave, propagating from the vertex of the cone tangents the front of the wave, reflected by the cone surface in this “singular” directions. The wave field is expressed in the terms of the parabolic cylinder functions.
@article{ZNSL_2000_264_a0,
     author = {V. M. Babich and D. B. Dement'ev and B. A. Samokish and V. P. Smyshlyaev},
     title = {Scattering of a highfrequency wave by the vertex of an arbitrary cone. {(Singular} directions.)},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--21},
     publisher = {mathdoc},
     volume = {264},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a0/}
}
TY  - JOUR
AU  - V. M. Babich
AU  - D. B. Dement'ev
AU  - B. A. Samokish
AU  - V. P. Smyshlyaev
TI  - Scattering of a highfrequency wave by the vertex of an arbitrary cone. (Singular directions.)
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 7
EP  - 21
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a0/
LA  - ru
ID  - ZNSL_2000_264_a0
ER  - 
%0 Journal Article
%A V. M. Babich
%A D. B. Dement'ev
%A B. A. Samokish
%A V. P. Smyshlyaev
%T Scattering of a highfrequency wave by the vertex of an arbitrary cone. (Singular directions.)
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 7-21
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a0/
%G ru
%F ZNSL_2000_264_a0
V. M. Babich; D. B. Dement'ev; B. A. Samokish; V. P. Smyshlyaev. Scattering of a highfrequency wave by the vertex of an arbitrary cone. (Singular directions.). Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 7-21. http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a0/