Estimates for conformal radius and distortion theorems for univalent functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 141-156
Cet article a éte moissonné depuis la source Math-Net.Ru
A simple proof of the recent result by E. G. Emel'yanov concerning the maximum of the conformal radius $r(D,1)$ for a family of simply connected domains with a fixed value $r(D,0)$ is given. A similar problem is solved for a family of convex domains. Exact estimates for functionals of the form $|g'(w)|/|g(w)|^{\delta}$ are obtained for families of functions inverse to elements of the classes $S$ and $S_m$, where $S=\{f:f\text{ is regular and univalent in the disk }\{z:|z|<1\}\text{ and }f(0)=f'(0)-1=0\}$ and $S_M=\{f\in S:|f(z)|.
@article{ZNSL_2000_263_a9,
author = {L. V. Kovalev},
title = {Estimates for conformal radius and distortion theorems for univalent functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {141--156},
year = {2000},
volume = {263},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a9/}
}
L. V. Kovalev. Estimates for conformal radius and distortion theorems for univalent functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 141-156. http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a9/