Estimates for conformal radius and distortion theorems for univalent functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 141-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A simple proof of the recent result by E. G. Emel'yanov concerning the maximum of the conformal radius $r(D,1)$ for a family of simply connected domains with a fixed value $r(D,0)$ is given. A similar problem is solved for a family of convex domains. Exact estimates for functionals of the form $|g'(w)|/|g(w)|^{\delta}$ are obtained for families of functions inverse to elements of the classes $S$ and $S_m$, where $S=\{f:f\text{ is regular and univalent in the disk }\{z:|z|<1\}\text{ and }f(0)=f'(0)-1=0\}$ and $S_M=\{f\in S:|f(z)|.
@article{ZNSL_2000_263_a9,
     author = {L. V. Kovalev},
     title = {Estimates for conformal radius and distortion theorems for univalent functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {141--156},
     year = {2000},
     volume = {263},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a9/}
}
TY  - JOUR
AU  - L. V. Kovalev
TI  - Estimates for conformal radius and distortion theorems for univalent functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 141
EP  - 156
VL  - 263
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a9/
LA  - ru
ID  - ZNSL_2000_263_a9
ER  - 
%0 Journal Article
%A L. V. Kovalev
%T Estimates for conformal radius and distortion theorems for univalent functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 141-156
%V 263
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a9/
%G ru
%F ZNSL_2000_263_a9
L. V. Kovalev. Estimates for conformal radius and distortion theorems for univalent functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 141-156. http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a9/