On some metaplectic Eisenstein series
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 105-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study cubic metaplectic Eisenstein series connected with the Jacobi maximal parabolic subgroup of a symplectic group. We use the so-called $sl(2)$-triples" technique in order to evaluate the Fourier coefficients of these series. In Secs. 1 and 2, we introduce the necessary notation and study the group $\Gamma(q)$ and its subgroups in detail. In Sec. 3, we prove the main result of the present paper (Theorem 1). Section 4 is devoted to the study of the Dirichlet series appearing in Theorem 1.
@article{ZNSL_2000_263_a8,
     author = {D. S. Kataev},
     title = {On some metaplectic {Eisenstein} series},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--140},
     year = {2000},
     volume = {263},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a8/}
}
TY  - JOUR
AU  - D. S. Kataev
TI  - On some metaplectic Eisenstein series
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 105
EP  - 140
VL  - 263
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a8/
LA  - ru
ID  - ZNSL_2000_263_a8
ER  - 
%0 Journal Article
%A D. S. Kataev
%T On some metaplectic Eisenstein series
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 105-140
%V 263
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a8/
%G ru
%F ZNSL_2000_263_a8
D. S. Kataev. On some metaplectic Eisenstein series. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 105-140. http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a8/