The problems on extremal decomposition in spaces of Riemann surfaces
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 84-104
Cet article a éte moissonné depuis la source Math-Net.Ru
An extension of a theorem on extremal decomposition of a Riemann surface is obtained. The problem of extremal decomposition is extended from the case of a Riemann surface $\Re$ with a prescribed set $P\subset \Re$ of distinguished points to the case of the Teichmüller space $T_\Re'$ of Riemann surfaces $\widehat{\Re}$ corresponding to $\Re$ under quasiconformal homeomorphisms $f$. For the functional $\mathscr M$ of our problem on extremal decomposition of a surface $\widehat{\Re}$, we consider a function $\mathscr M^*(x)$ expressing the dependence of the extremal value of $\mathscr M$ on a point $x\in T_{\Re'}$ . Differentiation formulas for the function $\mathscr M^*(x)$ are derived. These formulas are different and depend on the genus $g$ of the surface $\mathscr M$. The case where the function $\mathscr M^*(x)$ is pluriharmonic is considered.
@article{ZNSL_2000_263_a7,
author = {E. G. Emel'yanov},
title = {The problems on extremal decomposition in spaces of {Riemann} surfaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {84--104},
year = {2000},
volume = {263},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a7/}
}
E. G. Emel'yanov. The problems on extremal decomposition in spaces of Riemann surfaces. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 84-104. http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a7/