Distortion of the hyperbolic Robin capacity under conformal mapping and extremal configurations
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 49-69
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper is connected with recent results of Duren and Pfaltzgraff (J. Anal. Math., 78, 205–218 (1999)). We consider the problem on the distortion of the hyperbolic Robin capacity $\delta_h(A,\Omega)$ of the boundary set $A\subset\partial\Omega$ under a conformal mapping of a domain $\Omega\subset U$ into the unit disk $U$. It is shown that, for sets consisting of a finite number of boundary arcs or complete boundary components, the inequality \begin{equation} \operatorname{cap}_hf(A)\ge\delta_h(A,\Omega) \tag{1} \end{equation} is sharp in the class of conformal mappings $f\colon\Omega\to U$ such that $f(\partial U)=\partial U$. Here $\operatorname{cap}_hf(A)$ is the hyperbolic capacity of a compact set $f(A)\subset U$. We give some examples demonstrating properties of functions which realize the case of equality in relation (1).
@article{ZNSL_2000_263_a5,
author = {B. Dittmar and A. Yu. Solynin},
title = {Distortion of the hyperbolic {Robin} capacity under conformal mapping and extremal configurations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {49--69},
year = {2000},
volume = {263},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a5/}
}
TY - JOUR AU - B. Dittmar AU - A. Yu. Solynin TI - Distortion of the hyperbolic Robin capacity under conformal mapping and extremal configurations JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 49 EP - 69 VL - 263 UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a5/ LA - ru ID - ZNSL_2000_263_a5 ER -
B. Dittmar; A. Yu. Solynin. Distortion of the hyperbolic Robin capacity under conformal mapping and extremal configurations. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 49-69. http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a5/