Distortion of the hyperbolic Robin capacity under conformal mapping and extremal configurations
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 49-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is connected with recent results of Duren and Pfaltzgraff (J. Anal. Math., 78, 205–218 (1999)). We consider the problem on the distortion of the hyperbolic Robin capacity $\delta_h(A,\Omega)$ of the boundary set $A\subset\partial\Omega$ under a conformal mapping of a domain $\Omega\subset U$ into the unit disk $U$. It is shown that, for sets consisting of a finite number of boundary arcs or complete boundary components, the inequality \begin{equation} \operatorname{cap}_hf(A)\ge\delta_h(A,\Omega) \tag{1} \end{equation} is sharp in the class of conformal mappings $f\colon\Omega\to U$ such that $f(\partial U)=\partial U$. Here $\operatorname{cap}_hf(A)$ is the hyperbolic capacity of a compact set $f(A)\subset U$. We give some examples demonstrating properties of functions which realize the case of equality in relation (1).
@article{ZNSL_2000_263_a5,
     author = {B. Dittmar and A. Yu. Solynin},
     title = {Distortion of the hyperbolic {Robin} capacity under conformal mapping and extremal configurations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {49--69},
     year = {2000},
     volume = {263},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a5/}
}
TY  - JOUR
AU  - B. Dittmar
AU  - A. Yu. Solynin
TI  - Distortion of the hyperbolic Robin capacity under conformal mapping and extremal configurations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 49
EP  - 69
VL  - 263
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a5/
LA  - ru
ID  - ZNSL_2000_263_a5
ER  - 
%0 Journal Article
%A B. Dittmar
%A A. Yu. Solynin
%T Distortion of the hyperbolic Robin capacity under conformal mapping and extremal configurations
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 49-69
%V 263
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a5/
%G ru
%F ZNSL_2000_263_a5
B. Dittmar; A. Yu. Solynin. Distortion of the hyperbolic Robin capacity under conformal mapping and extremal configurations. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 49-69. http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a5/