Waring's problem for six cubes and higher powers
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 34-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that the equation $$ n=x_1^3+x_2^3+x_3^3+x_4^3+x_5^3+x_6^3+u^4+v^9 $$ has nonnegative integral solutions if $n\equiv1\pmod5$ is even and sufficiently large.
@article{ZNSL_2000_263_a3,
     author = {E. P. Golubeva},
     title = {Waring's problem for six cubes and higher powers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--39},
     year = {2000},
     volume = {263},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a3/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - Waring's problem for six cubes and higher powers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 34
EP  - 39
VL  - 263
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a3/
LA  - ru
ID  - ZNSL_2000_263_a3
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T Waring's problem for six cubes and higher powers
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 34-39
%V 263
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a3/
%G ru
%F ZNSL_2000_263_a3
E. P. Golubeva. Waring's problem for six cubes and higher powers. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 34-39. http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a3/