Waring's problem for six cubes and higher powers
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 34-39
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the equation $$ n=x_1^3+x_2^3+x_3^3+x_4^3+x_5^3+x_6^3+u^4+v^9 $$ has nonnegative integral solutions if $n\equiv1\pmod5$ is even and sufficiently large.
@article{ZNSL_2000_263_a3,
author = {E. P. Golubeva},
title = {Waring's problem for six cubes and higher powers},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {34--39},
year = {2000},
volume = {263},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a3/}
}
E. P. Golubeva. Waring's problem for six cubes and higher powers. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 34-39. http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a3/