Spectrum of Levy constants for quadratic irrationalities
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 20-33
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that $\pi^2/12\log2$ is a condensation point of the set of Levy constants for quadratic irrationalities of the form $\sqrt d$. Conditions are obtained under which the Levy constant for $\sqrt d$ is separated from the left bounding point for the Levy constants, i.e., from $\log(1 + \sqrt5)/2$.
@article{ZNSL_2000_263_a2,
author = {E. P. Golubeva},
title = {Spectrum of {Levy} constants for quadratic irrationalities},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {20--33},
year = {2000},
volume = {263},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a2/}
}
E. P. Golubeva. Spectrum of Levy constants for quadratic irrationalities. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 20-33. http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a2/