Spectrum of Levy constants for quadratic irrationalities
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 20-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that $\pi^2/12\log2$ is a condensation point of the set of Levy constants for quadratic irrationalities of the form $\sqrt d$. Conditions are obtained under which the Levy constant for $\sqrt d$ is separated from the left bounding point for the Levy constants, i.e., from $\log(1 + \sqrt5)/2$.
@article{ZNSL_2000_263_a2,
     author = {E. P. Golubeva},
     title = {Spectrum of {Levy} constants for quadratic irrationalities},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {20--33},
     year = {2000},
     volume = {263},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a2/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - Spectrum of Levy constants for quadratic irrationalities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 20
EP  - 33
VL  - 263
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a2/
LA  - ru
ID  - ZNSL_2000_263_a2
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T Spectrum of Levy constants for quadratic irrationalities
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 20-33
%V 263
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a2/
%G ru
%F ZNSL_2000_263_a2
E. P. Golubeva. Spectrum of Levy constants for quadratic irrationalities. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 20-33. http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a2/