The order of the Epstein zeta-function in the critical strip
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 205-225
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $Q(x_1,\dots,x_k)$ be a positive quadratic form of $k\ge2$ variables and let $\zeta(s;Q)$ be the Epstein zeta-function of the form $Q$. The growth rate of $\zeta(s;Q)$ on the line $\operatorname{Re}s=(k-1)/2$ is investigated. For $k\ge4$ and for an integral form $Q$, the problem is reduced to a similar problem on the behavior of the Dirichlet $L$-series on the line $\operatorname{Re}s=1/2$. In the case $k=3$, the diagonal form over $\mathbb R$ is investigated by the van der Corput method. For $k=2$, the known result due to Titchmarsh is re-proved by using a variant of the van der Corput method given by Heath-Brown.
@article{ZNSL_2000_263_a13,
     author = {O. M. Fomenko},
     title = {The order of the {Epstein} zeta-function in the critical strip},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {205--225},
     year = {2000},
     volume = {263},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a13/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - The order of the Epstein zeta-function in the critical strip
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 205
EP  - 225
VL  - 263
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a13/
LA  - ru
ID  - ZNSL_2000_263_a13
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T The order of the Epstein zeta-function in the critical strip
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 205-225
%V 263
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a13/
%G ru
%F ZNSL_2000_263_a13
O. M. Fomenko. The order of the Epstein zeta-function in the critical strip. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 205-225. http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a13/