The order of the Epstein zeta-function in the critical strip
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 205-225
Voir la notice du chapitre de livre
Let $Q(x_1,\dots,x_k)$ be a positive quadratic form of $k\ge2$ variables and let $\zeta(s;Q)$ be the Epstein zeta-function of the form $Q$. The growth rate of $\zeta(s;Q)$ on the line $\operatorname{Re}s=(k-1)/2$ is investigated. For $k\ge4$ and for an integral form $Q$, the problem is reduced to a similar problem on the behavior of the Dirichlet $L$-series on the line $\operatorname{Re}s=1/2$. In the case $k=3$, the diagonal form over $\mathbb R$ is investigated by the van der Corput method. For $k=2$, the known result due to Titchmarsh is re-proved by using a variant of the van der Corput method given by Heath-Brown.
@article{ZNSL_2000_263_a13,
author = {O. M. Fomenko},
title = {The order of the {Epstein} zeta-function in the critical strip},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {205--225},
year = {2000},
volume = {263},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a13/}
}
O. M. Fomenko. The order of the Epstein zeta-function in the critical strip. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 205-225. http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a13/