Nonvanishing of automorphic $L$-functions at the center of the critical strip
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 193-204 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $S_k(\Gamma_0(N)\chi)$ be the space of holomorphic $\Gamma_0(N)$-cusp forms of integral weight $k$ and of character $\chi(\operatorname{mod}n)$, let $f(z)$ be a newform of the space $S_k(\Gamma_0(N),\chi)$, and let $L_f(s)$ be the corresponding $L$-function. The following statements are proved. (1) Let $\mathscr F_0$ be the set of all newforms of $S_k(\Gamma_0(p),1)$, let $p$ be prime, and let $k\ge2$ be a constant even number. Then $$ \sum_{f\in\mathscr F_0:L_f(k/2)\ne0}1\gg\frac p{\log^2p} \quad (p\to\infty). $$ (2) Let $\mathscr F$ be the set of all Hecke eigenforms of the space $S_k(\Gamma_0(1),1)$ and let $k\equiv0\pmod 4$. Then $$ \sum_{f:\mathscr F_0:L_f(k/2)\ne0}1\gg\frac k{log^2k} \quad (k\to1). $$
@article{ZNSL_2000_263_a12,
     author = {O. M. Fomenko},
     title = {Nonvanishing of automorphic $L$-functions at the center of the critical strip},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {193--204},
     year = {2000},
     volume = {263},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a12/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Nonvanishing of automorphic $L$-functions at the center of the critical strip
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 193
EP  - 204
VL  - 263
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a12/
LA  - ru
ID  - ZNSL_2000_263_a12
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Nonvanishing of automorphic $L$-functions at the center of the critical strip
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 193-204
%V 263
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a12/
%G ru
%F ZNSL_2000_263_a12
O. M. Fomenko. Nonvanishing of automorphic $L$-functions at the center of the critical strip. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 193-204. http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a12/