On extremal decomposition problem in the family of general type systems of domains
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 157-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove a theorem extending results of the theory of extremal decomposition problems to families of systems of domains of general type. The considered families of systems of domains contain domains similar in the small to end and strip domains of a quadratic differential having poles of arbitrary orders $n_k\ge3$ at some marked points $c_k$, $k=1,\dots,p$. In this case, we give a simple definition of reduced modules for the considered systems of domains. Some other definitions for the treated systems of domains are also considered. Some examples are given illustrating the possibilities of applications of the theorem obtained in the problems on extremal decomposition.
@article{ZNSL_2000_263_a10,
     author = {G. V. Kuz'mina},
     title = {On extremal decomposition problem in the family of general type systems of domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--186},
     year = {2000},
     volume = {263},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a10/}
}
TY  - JOUR
AU  - G. V. Kuz'mina
TI  - On extremal decomposition problem in the family of general type systems of domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 157
EP  - 186
VL  - 263
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a10/
LA  - ru
ID  - ZNSL_2000_263_a10
ER  - 
%0 Journal Article
%A G. V. Kuz'mina
%T On extremal decomposition problem in the family of general type systems of domains
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 157-186
%V 263
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a10/
%G ru
%F ZNSL_2000_263_a10
G. V. Kuz'mina. On extremal decomposition problem in the family of general type systems of domains. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 16, Tome 263 (2000), pp. 157-186. http://geodesic.mathdoc.fr/item/ZNSL_2000_263_a10/