Krull-Schmidt theorem for Henselian rings
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 29-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A necessary and sufficient condition on aring for all indecomposable finite-dimensional algebras over it to be local is found. The Krull–Schmidt theorem for a class of rings that includes both Henselian voluation rings and rings of integers of multi-dimensional fields is proved.
@article{ZNSL_1999_265_a3,
     author = {M. V. Bondarko},
     title = {Krull-Schmidt theorem for {Henselian} rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {29--41},
     year = {1999},
     volume = {265},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a3/}
}
TY  - JOUR
AU  - M. V. Bondarko
TI  - Krull-Schmidt theorem for Henselian rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 29
EP  - 41
VL  - 265
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a3/
LA  - ru
ID  - ZNSL_1999_265_a3
ER  - 
%0 Journal Article
%A M. V. Bondarko
%T Krull-Schmidt theorem for Henselian rings
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 29-41
%V 265
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a3/
%G ru
%F ZNSL_1999_265_a3
M. V. Bondarko. Krull-Schmidt theorem for Henselian rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 29-41. http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a3/