On an embedding problem
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 314-322 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The following theorem is proved. Let $n$ be an odd integer; if all primes which enter in the canonical decomposition of the integer $16+27n^4$ with odd multiplicities have the form $8m+1$, $8m+3$, or $8m+5$, then the decomposition field of the polynomial $f(x)=x^4-2nx-1$ is embeddable into a nonsplit Galois extension of degree 48.
@article{ZNSL_1999_265_a23,
     author = {A. A. Yakovleva},
     title = {On an embedding problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {314--322},
     year = {1999},
     volume = {265},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a23/}
}
TY  - JOUR
AU  - A. A. Yakovleva
TI  - On an embedding problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 314
EP  - 322
VL  - 265
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a23/
LA  - ru
ID  - ZNSL_1999_265_a23
ER  - 
%0 Journal Article
%A A. A. Yakovleva
%T On an embedding problem
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 314-322
%V 265
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a23/
%G ru
%F ZNSL_1999_265_a23
A. A. Yakovleva. On an embedding problem. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 314-322. http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a23/