On an embedding problem
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 314-322
Cet article a éte moissonné depuis la source Math-Net.Ru
The following theorem is proved. Let $n$ be an odd integer; if all primes which enter in the canonical decomposition of the integer $16+27n^4$ with odd multiplicities have the form $8m+1$, $8m+3$, or $8m+5$, then the decomposition field of the polynomial $f(x)=x^4-2nx-1$ is embeddable into a nonsplit Galois extension of degree 48.
@article{ZNSL_1999_265_a23,
author = {A. A. Yakovleva},
title = {On an embedding problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {314--322},
year = {1999},
volume = {265},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a23/}
}
A. A. Yakovleva. On an embedding problem. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 314-322. http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a23/