Idempotents in the endomorphism ring of an ideal in a $p$-extension of a complete discrete valuation field with residue field of characteristic $p$ as a Galois module
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 22-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we study the question when there exist non-trivial idempotents in the endomorphism ring of an ideal in a $p$-extension of a complete discrete valuation field with residue field of finite characteristic $p>2$ as a Galois module. We prove that there are no non-trivial central idempotents for a non-abelian totally widely ramified extension.
@article{ZNSL_1999_265_a2,
     author = {M. V. Bondarko},
     title = {Idempotents in the endomorphism ring of an ideal in a $p$-extension of a complete discrete valuation field with residue field of characteristic~$p$ as a {Galois} module},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {22--28},
     year = {1999},
     volume = {265},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a2/}
}
TY  - JOUR
AU  - M. V. Bondarko
TI  - Idempotents in the endomorphism ring of an ideal in a $p$-extension of a complete discrete valuation field with residue field of characteristic $p$ as a Galois module
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 22
EP  - 28
VL  - 265
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a2/
LA  - ru
ID  - ZNSL_1999_265_a2
ER  - 
%0 Journal Article
%A M. V. Bondarko
%T Idempotents in the endomorphism ring of an ideal in a $p$-extension of a complete discrete valuation field with residue field of characteristic $p$ as a Galois module
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 22-28
%V 265
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a2/
%G ru
%F ZNSL_1999_265_a2
M. V. Bondarko. Idempotents in the endomorphism ring of an ideal in a $p$-extension of a complete discrete valuation field with residue field of characteristic $p$ as a Galois module. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 22-28. http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a2/