Idempotents in the endomorphism ring of an ideal in a $p$-extension of a complete discrete valuation field with residue field of characteristic $p$ as a Galois module
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 22-28
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we study the question when there exist non-trivial idempotents in the endomorphism ring of an ideal in a $p$-extension of a complete discrete valuation field with residue field of finite characteristic $p>2$ as a Galois module. We prove that there are no non-trivial central idempotents for a non-abelian totally widely ramified extension.
@article{ZNSL_1999_265_a2,
author = {M. V. Bondarko},
title = {Idempotents in the endomorphism ring of an ideal in a $p$-extension of a complete discrete valuation field with residue field of characteristic~$p$ as a {Galois} module},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {22--28},
year = {1999},
volume = {265},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a2/}
}
TY - JOUR AU - M. V. Bondarko TI - Idempotents in the endomorphism ring of an ideal in a $p$-extension of a complete discrete valuation field with residue field of characteristic $p$ as a Galois module JO - Zapiski Nauchnykh Seminarov POMI PY - 1999 SP - 22 EP - 28 VL - 265 UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a2/ LA - ru ID - ZNSL_1999_265_a2 ER -
%0 Journal Article %A M. V. Bondarko %T Idempotents in the endomorphism ring of an ideal in a $p$-extension of a complete discrete valuation field with residue field of characteristic $p$ as a Galois module %J Zapiski Nauchnykh Seminarov POMI %D 1999 %P 22-28 %V 265 %U http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a2/ %G ru %F ZNSL_1999_265_a2
M. V. Bondarko. Idempotents in the endomorphism ring of an ideal in a $p$-extension of a complete discrete valuation field with residue field of characteristic $p$ as a Galois module. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 22-28. http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a2/