Subgroup embeddings in the symmetric group of degree nine
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 281-284

Voir la notice de l'article provenant de la source Math-Net.Ru

This research is devoted to the determination of embedding properties of all nonprimary subgroups of the symmetric group on nine letters and continues previous investigations of the authors. We have tested the above-mentioned subgroups for the following properties: abnormality, pronormality, paranormality, their weak analogies, weak normality and the subnormalizer condition. The technique of Burnside marks as well as the respective information on the table of mark of $S_9$ from the computer algebra package GAP (Groups, Algorithms and Programming) library ‘TOM’ were used. Subgroups of prime-power orders have not been considered because many of the above-mentioned concepts coincide for such subgroups. The total number of subgroups in question turned out to be 432.
@article{ZNSL_1999_265_a19,
     author = {V. I. Mysovskikh and A. I. Skopin},
     title = {Subgroup embeddings in the symmetric group of degree nine},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {281--284},
     publisher = {mathdoc},
     volume = {265},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a19/}
}
TY  - JOUR
AU  - V. I. Mysovskikh
AU  - A. I. Skopin
TI  - Subgroup embeddings in the symmetric group of degree nine
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 281
EP  - 284
VL  - 265
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a19/
LA  - ru
ID  - ZNSL_1999_265_a19
ER  - 
%0 Journal Article
%A V. I. Mysovskikh
%A A. I. Skopin
%T Subgroup embeddings in the symmetric group of degree nine
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 281-284
%V 265
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a19/
%G ru
%F ZNSL_1999_265_a19
V. I. Mysovskikh; A. I. Skopin. Subgroup embeddings in the symmetric group of degree nine. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 281-284. http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a19/