The monoid of semisimple multiclasses of the group $G=G_2(K)$
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 202-221
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $G$ be a group, and let $C_L,\ldots,C_K$ be a sequence of conjugacy classes of $G$. The product $C_1C_2\ldots C_K=\{c_1c_2\ldots c_k\mid c_i\in C_i\}$ is called a multiclass of $G$. Further, let $G$ be a simple algebraic group, and let $M_{cs}(G)$ be the set of closures (with respect to Zariski topology) of all multiclasses of $G$ which are generated by semisimple conjugacy classes of $G$. Then $M_{cs}(G)$ is a monoid with respect to the operation: $m_1\cdot m_2=\overline{m_1m_2}$, where $\overline m$ is the closure of $m$. In this paper we give a description of $M_{cs}(G)$ in the case $G=G_2(K)$, where $K$ is an algebraically closed field of the characteristic zero.
			
            
            
            
          
        
      @article{ZNSL_1999_265_a14,
     author = {M. N. Kornienko},
     title = {The monoid of semisimple multiclasses of the group $G=G_2(K)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {202--221},
     publisher = {mathdoc},
     volume = {265},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a14/}
}
                      
                      
                    M. N. Kornienko. The monoid of semisimple multiclasses of the group $G=G_2(K)$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 202-221. http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a14/