The monoid of semisimple multiclasses of the group $G=G_2(K)$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 202-221

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a group, and let $C_L,\ldots,C_K$ be a sequence of conjugacy classes of $G$. The product $C_1C_2\ldots C_K=\{c_1c_2\ldots c_k\mid c_i\in C_i\}$ is called a multiclass of $G$. Further, let $G$ be a simple algebraic group, and let $M_{cs}(G)$ be the set of closures (with respect to Zariski topology) of all multiclasses of $G$ which are generated by semisimple conjugacy classes of $G$. Then $M_{cs}(G)$ is a monoid with respect to the operation: $m_1\cdot m_2=\overline{m_1m_2}$, where $\overline m$ is the closure of $m$. In this paper we give a description of $M_{cs}(G)$ in the case $G=G_2(K)$, where $K$ is an algebraically closed field of the characteristic zero.
@article{ZNSL_1999_265_a14,
     author = {M. N. Kornienko},
     title = {The monoid of semisimple multiclasses of the group $G=G_2(K)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {202--221},
     publisher = {mathdoc},
     volume = {265},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a14/}
}
TY  - JOUR
AU  - M. N. Kornienko
TI  - The monoid of semisimple multiclasses of the group $G=G_2(K)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 202
EP  - 221
VL  - 265
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a14/
LA  - ru
ID  - ZNSL_1999_265_a14
ER  - 
%0 Journal Article
%A M. N. Kornienko
%T The monoid of semisimple multiclasses of the group $G=G_2(K)$
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 202-221
%V 265
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a14/
%G ru
%F ZNSL_1999_265_a14
M. N. Kornienko. The monoid of semisimple multiclasses of the group $G=G_2(K)$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 202-221. http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a14/